

Evaluating the Impact of Power Outages on Occupancy Patterns During the 2021 Texas Power Crisis

Andy Berres¹, Baldwin Nsonga², Caitlyn Clark¹, Robert Jeffers¹,

Hans Hagen³, and Gerik Scheuermann²

- 1: National Renewable Energy Laboratory (USA)
- 2: University of Leipzig (Germany)
- 3: University of Kaiserslautern-Landau (Germany)

Winter Storm Uri

In February 2021, Winter Storm Uri swept across the United States

Texas was hit hard with

- up to 50°F/25°C below typical winter temperatures.
- widespread outages.

How do extreme events and power outages change human behavior?

- Do people prepare for an extreme event?
- Where do people go when the power is out?
- Where do people go as everything goes back to normal?

Austin, Texas \rightarrow Buildings colored by POI type

Points of Interest vs Buildings

- POI data based on cellphone GPS
- GPS precision is good but not perfect
- Public data (at scale)
 - building geometries
 - **X** geometries for individual units
- Multiple POIs in buildings

*VIS2024

• How do we decide Building Type?

- Medical																																															
- Critical Supplies		Building Types]																	
- Critical Infrastructure				l.	Ν	Ла	IC	0	gr	01	Jp	S																																			
- Primary Shelters		POI Type													Building Type																																
- Education		• Ass Micro groups • Ass													 Assign by majority 																																
- Secondary Supplies															si	ign by ranking																															
- Secondary Shelters	pital -	cility ·	Care -	ation -	store -	nacy.	store -	SWS	ergy -	ation -	/ater ·	- emo	cility ·	· guis	ging -	enter -	·looh	ersity.	tetail-	3ank -	nent-	ation -	oace.	orary -	- dius	enter -	ation -	- trod	ansit -	ıking -	nent.	- bing	rices -	king -	lture ·												
- Transportation	Hos	Medical Fa	Urgent (Gas St	Hardware S	Pharn	Grocery S	Fire & E	En Managar	Police St	and Wastew	Nursing H	rectional Fa	idential Hou	Pod	hild Care Ce	Sc	ege or Unive	æ	ш	and Governr	ity Organiza	rge Event Sp	3	place of Wor	mmunity Ce	d Transport	Air	Tra	ing and Drin	nd Entertainr	Ship	ssional Serv	Par	Agricu												
- Services									Mac		Water		Cor	Res		0		Colle			mmunity ;	Commur	Lai	,		ŏ	Travel an			Din	Arts ar		and Profe														
- Other																					Ŝ												Business a														

Event

unknown -

Landmarks and Outdoors

Overview

Map View

Change in Visits by Type

Change in Visits Timeline

Outage Timeline

2021-02-10 20:00 - 2021-02-13 15:45

Timeline Navigation

Analysis Before vs during

Analysis Before vs after

Reception and Next Steps

- Incorporate weather
 - See <u>Extreme Weather and</u> the Power Grid: A Case Study of Winter Storm Uri
- Analyze **Demographics**
 - Visit data has home location (Census block group level – 600-3000 population)

Project team

- Anthropology
- Public health
- Human geography
- Energy equity
- Environmental science
- Energy reliability/resilience
- Civil engineering
- Power engineering

Questions

- Want a live demo?
- Have more questions?
- Let's chat on Discord

NREL/PR-5700-91677

This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by National Renewable Energy Laboratory Laboratory Directed Research and Development Program. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

Data Sources

